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We explore the dynamics of entanglement in classically chaotic systems by considering a multiqubit system
that behaves collectively as a spin system obeying the dynamics of the quantum kicked top. In the classical
limit, the kicked top exhibits both regular and chaotic dynamics depending on the strength of the chaoticity
parameterk in the Hamiltonian. We show that the entanglement of the multiqubit system, considered for both
the bipartite and the pairwise entanglement, yields a signature of quantum chaos. Whereas bipartite entangle-
ment is enhanced in the chaotic region, pairwise entanglement is suppressed. Furthermore, we define a time-
averaged entangling power and show that this entangling power changes markedly ask moves the system from
being predominantly regular to being predominantly chaotic, thus sharply identifying the edge of chaos. When
this entangling power is averaged over all states, it yields a signature of global chaos. The qualitative behavior
of this global entangling power is similar to that of the classical Lyapunov exponent.
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I. INTRODUCTION

Quantization of classical chaotic systems has long been of
interest because of the challenges in identifying quantum sig-
natures of systems that, in a classical limit, exhibit chaotic
behavior. Various signatures have been identified, such as the
spectral properties of the generating Hamiltonian[1], phase-
space scarring[2], hypersensitivity to perturbation[3], and
fidelity decay[4], which indicate an underlying chaotic pres-
ence in the quantum dynamics. Here, we investigate the issue
of quantum signatures from the perspective of entanglement:
as entanglement is at the heart of quantum mechanics and a
crucial resource for quantum information processing[5,6],
the entanglement inherent in quantum chaotic systems could
provide a valuable approach to studying decoherence and
quantum chaos[7–13]. Furthermore, quantum chaos could
be seen as an engine for generating entanglement; indeed
quantum chaos could lurk in quantum information process-
ing [14,15] as a deleterious or perhaps even as an advanta-
geous effect. We study entanglement by considering a finite
multipartite system, whose collective dynamics obey chaotic
Hamiltonian dynamics in the classical limit.

Previous studies of entanglement in chaotic systems
[7–14] have explored bipartite entanglement in pure states,
entanglement of qubits in a multiqubit system, and average
entanglement or entangling power. In this study we explore
all these different types of entanglement in a single simple
system, namely the quantum kicked top(QKT) [16–20]. This
enables us to compare the degree to which these different
types of entanglement display signatures of chaos.

An advantage of the dynamics of the QKT is that it obeys
a spin algebra symmetry. This spin system can thus be re-
garded as a composite of distinct spin-half particles, thereby
admitting a multiqubit interpretation. Our system thus allows
us to study and compare pairwise entanglement between two

qubits as well as bipartite entanglement between the two
qubits and the rest of the qubits. The Hilbert space for the
QKT is finite and the Poincaré section of the phase space is
compact, allowing analyses of quantum and classical dynam-
ics uncomplicated by truncation issues. The QKT is well
studied and well understood, thereby simplifying the analysis
of the role of entanglement in the system. Finally, the QKT
possesses a parity symmetry that allows coherent quantum
tunneling to occur for states localized at classical fixed points
[20].

The Hamiltonian evolution may increase the entangle-
ment of the multipartite system, initiated in a collective spin
coherent state[21]. For this analysis, it suffices to employ
two entanglement measures. For bipartite entanglement,
where the multipartite system is divided into two sub-
systems, entropy of a subsystem is used to quantify the de-
gree of entanglement between the two subsystems. Pairwise
entanglement, on the other hand, considers the degree of en-
tanglement between two qubits traced over all remaining qu-
bits and is quantified by the concurrence[22,23].

We present general results for both bipartite and pairwise
entanglement in the multipartite QKT and demonstrate that
these entanglement measures reveal strong signatures of the
classical chaos features corresponding to the onset of chaos
and to the edge of chaos[24], which is the boundary between
regular and chaotic regimes in the classical phase space. We
have studied the behavior of the linear entropy and the con-
currence for specific initial coherent states as well as the
dynamics of these quantities when averaged over all initial
coherent states. Recent studies have shown that, whereas
chaos can enhance the growth of bipartite entanglement in
some cases[8], in weakly coupled chaotic systems chaos can
cause slower growth of entanglement between the coupled
systems[12,25,26]. In our system(quantum kicked top), we
show that the linear entropy increases more rapidly for an

PHYSICAL REVIEW E 70, 016217(2004)

1539-3755/2004/70(1)/016217(8)/$22.50 ©2004 The American Physical Society70 016217-1



initial state centered in a chaotic region of the classical phase
space than one centered on an elliptic fixed point. The bipar-
tite entanglement between two qubits and the rest of the
qubits in the QKT thus does not behave like the bipartite
entanglement between weakly coupled chaotic systems con-
sidered in Refs.[12,26]. However, the pairwise entanglement
as measured by the concurrence also reveals a dramatic
change for a spin coherent state whose mean traverses the
edge of chaos on its transit through chaotic and regular re-
gions of the phase space. Contrary to the linear entropy, the
concurrence rapidly decreases for an initial state located in
the chaotic region.

While the linear entropy and concurrence can reveal the
local chaotic and regular structures in phase space, the en-
tangling power which is the averaged bipartite or pairwise
entanglement can be used to identify the edge of chaos and
quantify the onset of global chaos, much like the classical
Lyapunov exponent. We show that the entangling power
greatly increases as the chaoticity parameterk is increased
and the corresponding classical kicked top makes the transi-
tion from predominantly regular to predominantly chaotic
behavior. In particular, the behavior of the average linear
entropy is qualitatively similar to that of the classical
Lyapunov exponent, thus revealing a signature of a global
feature of the classical chaos.

The paper is organized as follows. In Sec. II, we introduce
the QKT and its classical dynamics, and introduce bipartite
and pairwise entanglement measures. In Sec. III, we study in
detail the dynamical evolutions of bipartite and pairwise en-
tanglement, and examine the edge of quantum chaos, the
onset of quantum chaos via the entangling power. We con-
clude in Sec. IV.

II. BACKGROUND

A. Quantum kicked top

The QKT is described by the Hamiltonian[16–18]

H =
k

2jt
Jz

2 + pJy o
n=−`

`

d st − ntd, s1d

whereJasaP hx,y,zjd are spin operators and states are re-
stricted to irrep j for which J2= js j +1d. t is the duration
between periodic kicks,p is the strength of each kick(which
is manifested as a turn by anglep), andk is the strength of
the twist. The Hamiltonian is an alternative sequence of
twists (Jz

2 term) and turns(Jy term). The QKT describes a
spin system, which can be comprised of multiple systems of
lower spins. Forhsiaj the Pauli operators for theith qubit, a
collective spin operator forN qubits, satisfying the usual
SUs2d algebra, is given by

Ja = o
i=1

N
sia

2
, s2d

so thatj =N/2. An example of using multiple qubits to simu-
late the QKT has been presented for trapped ions[27].

A standard dynamical description of the QKT is via the
Floquet operator

F = expS− i
k

2jt
Jz

2Dexps− ipJyd, s3d

where the energy is rescaled so thatt =1 and p=p /2 are
henceforth assumed. The orthogonal eigenstates ofF, de-
noted byhuFml :−j ømø jj, which satisfy

FuFml = expsiFmduFml, s4d

providing a convenient basis for stroboscopic evolution. An
arbitrary stateuCs0dl evolves to

uCsndl = FnuCs0dl = o
m=−j

j

Cms0dexpsinFmduFml, s5d

with Cms0d=kFmuCs0dl.
The QKT [16,17] is chaotic in the classical limit. For

integrable systems, it is well known from semiclassical
theory that the classical actions can be associated with cor-
responding regular eigenstates of the quantum system with a
well-defined quantum number. This correspondence breaks
down in chaotic systems[28]. In quasiintegrable systems
with a mixed phase space of regular and chaotic regions,
some of the eigenstates can still be associated with local
actions in the regular regions with corresponding discrete
eigenenergies. The remaining eigenstates result in an irregu-
lar energy spectrum corresponding to the chaotic region[29].
We show here that this underlying regular and chaotic energy
spectrum of the Floquet eigenstates of the QKT is reflected
in the dynamics of the entanglement, depending on whether
the initial state is in the regular or chaotic region of the
classical phase space.

The classical limit of the QKT is obtained by expressing
X=kJx/ jl and similarly forY and Z and factorizing all mo-
ments such askJxJy/ j2l=XY to products of first-order mo-
ments. Then the classical equations of motion, obtained from
the Heisenberg operator equations of motion and applying
the factorization rule above, are given by[17]

X8 = Z cosskXd + Y sinskXd,

Y8 = − Z sinskXd + Y cosskXd,

Z8 = − X s6d

The stroboscopic evolution described by Eq.(6) can be
represented in a phase space given by a sphereS2 of unit
radius. The classical, normalized angular momentum vari-
ablessX,Y,Zd can be parametrized in polar coordinates as
sX,Y,Zd=ssin u cosf ,sin u sin f ,cosud, where u and f
are the polar and azimuthal angles, respectively. Thus the
map is essentially two dimensional.

The stroboscopic dynamics of the classical map is shown
in Fig. 1. In the plot, we choose the chaoticity parameterk
=3, which yields a mixture of regular and chaotic areas of
significant size. Elliptic fixed points surrounded by the cha-
otic sea are evident. Two such elliptic fixed points have co-
ordinatessu ,fd=s2.25,−2.51d and su ,fd=s2.25,0.63d. As
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we will see, this phase-space structure of the classical kicked
top determines behaviors of quantum entanglement in the
QKT.

B. Entanglement measures

Pure-state bipartite entanglement has been calculated in
previous studies that explore connections between quantum
entanglement and underlying classical chaos[8–12]. Quite
recently, Bettelli and Shepelyansky[14] studied the behavior
of the concurrence in a system exhibiting quantum chaos,
and found that the underlying classical chaos leads to an
exponential decrease of the concurrence, down to some re-
sidual values. This result shows that the concurrence is very
sensitive to the onset of chaos, and understanding behaviors
of entanglement may help to control quantum chaos and sup-
press its negative effects in quantum information processing.

We consider both the bipartite entanglement between a
pair of qubits extracted from a symmetric multiqubit state
and the rest of the system, as well as the pairwise entangle-
ment between the two qubits. Once we obtain the two-qubit
reduced density matrix, the entanglement can be readily cal-
culated. By expressing the density matrixr12 in terms of the
expectation values of the collective operators, all elements of
r12 are conveniently obtained[30].

Our system governed by the QKT Hamiltonian is a com-
posite system, and remains in a pure state at all times if we
initially choose a pure state. For pure states, bipartite en-
tanglement is well defined and can be quantified by entropies
of either subsystem. For convenience, we adopt the linear
entropy as the entanglement measure, which is defined as

E = 1 − Tr1sr1
2d, s7d

where r1 is the reduced density matrix for the first sub-
system. The maximum linear entropy for a pure state of a
bipartited13d2 system, is given by1−1/minsd1,d2d. While
we may choose other entropies, such as the von Neumann

entropy, as our entanglement measure, the qualitative results
are, in general, independent of choice of entropies for pure
states. Moreover, the linear entropy and the von Neumann
entropy are two limiting cases of the Rényi entropy[31].
They are thus interrelated and one can be used to estimate
the other[32,33].

Given our N-qubit system, we consider another type of
entanglement, the pairwise entanglement, i.e., the entangle-
ment between a pair of qubits. WhenNù3, the pair of qubits
can be in a mixed state. Entanglement for a mixed stater12 is
quantified by the entanglement of formation. Specifically, for
a pair of qubits, entanglement is equivalent to the nonposi-
tivity of the partially transposed density matrix[34]. Alter-
natively, one can use the concurrence[22,23] to quantify the
pairwise entanglement. The concurrence is defined as

C = maxh0,l1 − l2 − l3 − l4j, s8d

with the quantitiesli being the square roots of the eigenval-
ues in descending order of the matrix productr12ss1y

^ s2ydr12
p ss1y ^ s2yd. r12

p denotes the complex conjugate of
r12. The value of the concurrence ranges from zero for an
unentangled state to unity for a maximally entangled state.

III. ENTANGLEMENT AND QUANTUM CHAOS

We present here our studies of the entanglement dynamics
of our N-qubit system governed by the QKT(1), with the
relevant angular momentum operatorsJa given by the col-
lective operators. If we choose the initial pure state to be
symmetric under the exchange of any qubits, then the state
vector at any later time is also symmetric. Thus, we can
describe the state of theN-qubit system in terms of the or-
thonormal basisu j ,mlsm=−j ,−j +1, ... ,jd with j =N/2. The
statesu j ,ml are the usual symmetric Dicke states[35]. State
u j ,−jl is not entangled, whereas stateu j ,−j +1l, the so-called
W state [36,37], is pairwise entangled with concurrenceC
=2/N.

To connect the quantum and classical dynamics of the
kicked top, we choose the initial state to be the spin coherent
state (SCS) huu ,fl=Rsu ,fdu j , jl ;−pøføp ,0øuøpj
with [21]

Rsu,fd = exphiu fJx sin f − Jy cosfgj. s9d

The mean ofJ / j is

ku,fuJ/ j uu,fl = ssin u cosf,sin u sin f,cosud. s10d

The initial SCS can be rewritten as a multiqubit product
state, and thus exhibits no entanglement(zero linear entropy
and concurrence).

A. Dynamics of entanglement

We start by exploring the dynamics of entanglement for
initial states with a mean value in four different regions of
the phase space, specifically a fixed point, an integrable(or
KAM ) region, a chaotic region, and the border between the
integrable and the chaotic region known as “the edge of
chaos.” We are also interested in the behavior as the chaotic-
ity parameterk is varied. We start with the choicek=3,

FIG. 1. The stroboscopic phase-space dynamics of the classical
kicked top for k=3. Three hundred stroboscopic trajectories are
plotted, each for a duration of 300 kicks.
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which exhibits large integrable and large chaotic regions, and
we select four states localized in the four regions mentioned
earlier.

For convenience we fixu=2.25 and varyf. This “line of
latitude” onS2 includes all four regions we are exploring. An
elliptic fixed point arises atf=0.63, a point in the regular
region occurs atf=0.90, one edge of chaos can be seen at
f=1.05, and a point well in the chaotic sea is located atf
=2.00. The states with means at each of thesesu ,fd points in
the phase space are chosen to be SCSs. These states are
minimum uncertainty states and are well localized around
the four chosen points in phase space.

We simulate bipartite entanglement between two qubits
and the otherN−2 qubits, and display the numerical results
in Fig. 2. Figure 2(a) shows results forN=50 and Fig. 2(b)
shows the dynamics in a more semiclassical regime withN
=500. In both cases we observe that entanglement is en-
hanced for the initial state centered in the chaotic region after
a short time. Initially, the linear entropy is zero, and as the
dynamics evolve, the entropy increases slowly for the wave
packet centered in the regular region, whereas it exhibits a
rapid rise for a state centered in the chaotic region.

The curve withf=1.05 displays the intermediate behav-
ior. Furthermore, the entanglement for the state initially cen-
tered on a fixed point displays a periodic modulation that is
absent in the evolution of the entanglement for the state ini-
tiated in the chaotic region. This periodic modulation is an
indicator of the underlying regular classical dynamics and
corresponding regular energy spectrum of the Floquet eigen-
states[29]. The difference in the dynamics for states centered
in the regular and chaotic regions is apparent forN=50, but
is much clearer forN=500. AsN becomes larger, the initial
state is more tightly localized. This tighter localization on the
fixed point sf=0.63d results in the almost stationary behav-
ior of the entanglement. For the initial state not centered on
the elliptic fixed point but tightly localized in a regular island
sf=0.9d, quasiperiodic behavior with a collapse and revival
is evident. These features eventually disappear for the initial
state that is completely localized in the chaotic seasf=2d.

Recent studies[12,25,26] have considered entanglement
between two weakly coupled kicked tops and found that in-
creasing the chaoticity parameter of the tops can lead to
slower growth in entanglement between the tops. The rate of
growth of this entanglement can be related to certain time
correlation functions. Our results combined with these stud-
ies thus show that whereas the growth of entanglement be-
tween bipartite divisions of a single kicked top can be en-
hanced by chaos, the entanglement with another weakly
coupled kicked top is simultaneously decreased. Hence,
chaos affects entanglement between the different divisions of
a composite system in different ways. Figure 3 shows the
dynamical behavior of the concurrence. Just as in the linear
entropy case, we see a rapid change in the concurrence for a
state initially centered in the chaotic sea. However, our nu-
merical results suggest that the initial state centered in the
fixed point will lead to large pairwise entanglement produc-
tion, which is opposite to the case of the bipartite pure-state
entanglement production, in which the classical chaos en-
hances the production of bipartite entanglement. Of particu-

FIG. 2. Dynamical evolution of the linear entropy for initial
SCS with u=2.25 and differentf. The parameterk=3 and the
number of qubits is(a) N=50, (b) N=500.

FIG. 3. Dynamical evolution of the concurrence for initial SCS
with u=2.25 and differentf. The parameterk=3 and the number of
qubits isN=50.
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lar interest are the collapses and revivals in the evolution of
the concurrence for a state centered on the fixed point. Figure
3 (the case off=0.63) shows a revival atn=52. Additional
revivals occur atn=113 and 183. For the chaotic case, we
cannot observe the revival phenomenon. This quasiperiodic
behavior in the regular region indicates that the SCS in the
regular region must have a finite support over the basis set of
regular Floquet eigenstates.

In Fig. 4 we plot the long-time behaviors of the concur-
rence for the regular case, and observe multiple collapse and
revivals. At long times the revivals become sparse, and fi-
nally the concurrence reduces to zero. We see that the con-
currence is very sensitive to quantum chaos, which is con-
sistent with the observations of Bettelli and Shepelyansky
[14] in their studies of concurrence between qubits during
the operation of an efficient multiqubit quantum algorithm.
However, unlike their system in which the concurrence
reached a finite residual value, in our QKT model, the con-
currence disappears at very long times. The difference arises
because we assume symmetrized multiqubit states, whereas
Bettelli and Shepelyansky allow this symmetry to be broken.

B. Edge of quantum chaos

The edge of chaos is an important issue in the study of
quantum chaos. In classical chaos, the edge of chaos is a
fractal boundary separating the regular and chaotic regions.
However, this fine-grained fractal structure does not translate
well into the quantum domain. Recently, it was found that
the edge of chaos is characterized by a power law decrease in
the overlap between a state evolved under chaotic dynamics
and the same state evolved under a slightly perturbed dynam-
ics [24]. Here, we study the edge of quantum chaos from the
perspective of entangling powers, which are defined to be
either the maximal or the mean entanglement that the evolu-
tion operator can generate over all initial states[38,39]. Al-
ternatively, given a fixed initial state, we may ask what is the
maximal and the mean entanglement that the operator can

generate over all time. In general, state averaging and time
averaging are not equivalent and so the two methods yield
different results.

In strongly chaotic systems, the two definitions converge
due to nearly ergodic dynamics. In this study, we explore
both the entanglement averaged over all time as well as the
entanglement averaged over all initial coherent states. We
begin our analysis with the average over all time. In practice,
for numerical purposes we consider a finite time domain. We
define time-averaged entanglement power as the average lin-
ear entropy or average concurrence over a time intervalT
(which should be much longer than other time scales) as
follows:

ET =
1

T
E

0

T

dt Estd, CT =
1

T
E

0

T

dt Cstd. s11d

For local unitary operations, the above quantities are neces-
sarily zero.

We fix the polar angleu=2.25 of the SCS as before, and
vary the azimuthal anglef from −p to p. The center of the
SCS wave packet thus commences in the chaotic region and
passes through two regular islands. Figure 5 displays the
time-averaged mean linear entropyET and mean concurrence
CT as a function of the azimuthal anglef. When the azi-
muthal angle goes from −p to the first regular region, the
linear entropy decreases until it reaches a minimum which
approximately corresponds to the fixed pointsu ,fd=s2.25,
−2.51d. Subsequently the mean entropy increases to a flat
larger area corresponding to the chaotic region.

In contrast to the behavior of the mean linear entropy, the
mean concurrence reaches a maximum approximately at the
fixed point. Whenf increases from −p, the mean concur-

FIG. 4. Long-time behavior of the concurrence for the regular
casesu=2.25,f=0.63d. k=3 andN=50.

FIG. 5. Mean linear entropy and mean concurrence against azi-
muthal anglef. The mean linear entropy is plotted forN=20 (solid
line), N=50 (dashed line), andN=100 (dotted line); the mean con-
currence is plotted forN=100 (solid line), N=200 (dashed line),
andN=300(dotted line). The parameteru=2.25 andk=3. The time
average is over 200 steps, and the subplots below are enlarged
versions of above ones.
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rence first decreases slowly, and then exhibits an abrupt in-
crease to a maximal value. The turning point thus sharply
defines the edge of chaos. Another turning point is obvious
from the figure. We further calculate the mean linear entropy
and the mean concurrence as a function ofu and f. The
contour plots are shown in Figs. 6 and 7. Comparing Figs. 1
and 6, we observe that these two figures closely match each
other. Specifically, the four islands of Fig. 6 are evident,
reflecting the four stable islands in the classical phase space.
Comparing Figs. 1 and 7, the four stable islands of Fig. 1
closely match those of Fig. 7. Hence we find a good
classical-quantum correspondence.

C. Onset of chaos

In the previous section, the time-averaged entanglement
revealed clearly whether the initial state was in the regular or
chaotic region. Here, we are concerned with the global prop-
erties of a chaotic system. For classical systems, the onset of
global chaos can be quantified by calculating the global
Lyapunov exponent. Here, we define the following entan-
gling power to quantify the onset of global quantum chaos:

eT =
1

T
E dmE

0

T

dt Est,u,fd,

cT =
1

T
E dmE

0

T

dt Cst,u,fd, s12d

where dmsu ,fd is the Haar measure. Like the global classi-
cal Lyapunov exponent, this state-averaged entangling power
characterizes global properties of the QKT. The entangling
power characterizes the entangling capability of the
k-dependent Floquet operator.

Figure 8 shows the entangling powers and the Lyapunov
exponent versus parameterk. We observe that whenk0
<2.4, the entangling powereT exhibits a rapid increase, and
saturates beyondk1<5. The rapid increase signifies the on-
set of quantum chaos, and the saturation implies that global
chaos has occurred. Betweenk0 andk1, when there are still
regions of regular islands in the chaotic phase space, a mix-
ture of regular and chaotic behavior is expected. In contrast
to eT, cT becomes very small fork.k0, which is also an
indicator of the onset of quantum chaos. Note thatcT has a
peak which results from the competition between the entan-
gling power of the QKT Floquet operator and the inherent
chaos. On one hand, increasingk will enhance the entangling
power, and on the other hand, the inherent quantum chaos
suppresses the pairwise entangling power, thus leading to the
peak. ForeT, the increase ofk and the quantum chaos both
enhance the linear entropy, and thus no competition exists
and no peak appears.

IV. CONCLUSIONS

We have investigated a multiqubit system whose collec-
tive Hamiltonian dynamics are chaotic in the classical limit.
We studied the particular example of the quantum kicked
top, which is a well-studied example of quantum chaos with

FIG. 6. Contour plot of mean linear entropy againstf and u.
The mean is over 200 kicks,k=3 andN=50.

FIG. 7. Contour plot of mean concurrence againstf andu. The
average is over 200 kicks,k=3 andN=50.

FIG. 8. Entangling powereT (square line), cT (diamond line),
and the Lyapunov exponentl (circle line) againstk. The plot of
Lyapunov exponent corresponds to Fig. 1 of Ref.[40]. The param-
eterN=36 and time average is over 50 kicks.
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the advantages of having a finite-dimensional Hilbert space
(thereby obviating the need for truncation that arises in
infinite-dimensional Hilbert spaces) and of involving only
spin operators of no more than quadratic order. Although the
collective dynamics are well understood, the underlying en-
tanglement of the qubits that collectively make up the quan-
tum kicked top is only just beginning to be understood. Here
we have developed methods for studying the quantum kicked
top, and these methods are applicable to more general sys-
tems. We have identified bipartite and pairwise entanglement
as two quite distinct measures to determine the entanglement
in the system, and we have related the dynamics of these
measures of entanglement to chaotic features of the quantum
kicked top in the classical limit; as examples, we have con-
nected the features of the entanglement evolution to local
properties such as whether the state is supported predomi-
nantly in the regular or chaotic region and also to global
properties such as showing that entangling power averaged
over states grows similarly to the global Lyapunov exponent
growth for the classical chaotic system.

We have assumed symmetric multiqubit states throughout,
and the entanglement properties studied here reflect this as-
sumption. If the symmetrization condition is broken, differ-
ent dynamics can be expected. For example, Bettelli and
Shepelyansky[14] show a concurrence that reaches a re-
sidual steady-state value. They explain this nonzero residue
as being a result of symmetry breaking in their system. In
contrast, our system exhibits a decay of concurrence to zero.

The assumption of symmetric states implies indistinguish-
ability of the qubits. Thus even though entanglement may
exist in the system, it may not be accessible as a useful tool
for quantum information processing, due to the inherent in-
ability to distinguish between the qubits. An alternative mea-
sure of entanglement could be an operational measure that
takes into account physical restrictions on accessibility of the
entanglement due to symmetries of the system[41].

In summary, our work highlights the connection between
the entanglement of a multiqubit state whose collective dy-
namics is chaotic in the classical limit and introduces valu-
able methods and measures for studying this entanglement. It
would be worthwhile to investigate other quantum chaotic
systems using concepts of time averaging and global entan-
gling power. Furthermore, it would be interesting to define
and compare systems in which the symmetrization results
hold to systems where this symmetrization condition is bro-
ken.
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